SPA-900TG Series Spectrum Analyzer

SPA-932TG SPA-921TG

General Description

Com-Power's SPA-900TG series of spectrum analyzers have a frequency range of 9 kHz to 2.1 GHz / 3.2 GHz. With their light weight, small size, and friendly user interface, the SPA-900TG offer a bright easy to read display, powerful and reliable automatic measurements, and plenty of powerful features. Applications include broadcast monitoring/evaluation, site surveying, EMI precompliance, research and development, education, production, and maintenance.

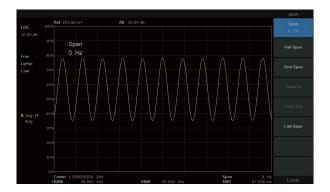
Features and Benefits

- 🜆 All-Digital IF Technology
- Frequency Range from 9 kHz up to 3.2 GHz
- -161 dBm/Hz Displayed Average Noise Level (Typ.)
- -98 dBc/Hz @10 kHz Offset Phase Noise (1 GHz, Typ.)
- In Ital Amplitude Accuracy < 0.7 dB</p>
- I Hz Minimum Resolution Bandwidth (RBW)
- 🜆 Standard Preamplifier
- Ip to 3.2 GHz Tracking Generator Kit (Opt.)
- Reflection Measurement Kit (Opt.)
- Advanced Measurement Kit (Opt.)
- EMI Pre-compliance Test Kit (Opt.)
- № 10.1 Inch WVGA (1024x600) Display

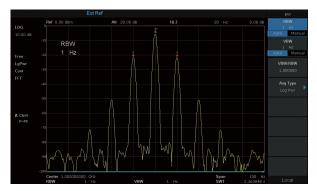
Model and Main index

Model	SPA-932TG	SPA-921TG
Frequency Range	9 kHz~3.2 GHz	9 kHz~2.1 GHz
Resolution Bandwidth	1 Hz~1 MHz, in 1-3-10 sequence	1 Hz~1 MHz, in 1-3-10 sequence
Displayed Average Noise Level	-161 dBm/Hz, Normalize to 1 Hz (typ.)	-161 dBm/Hz, Normalize to 1 Hz (typ.)
Phase Noise	< -98 dBc/Hz@1 GHz, 10 kHz offset	< -98 dBc/Hz@1 GHz, 10 kHz offset
Amplitude Precision	< 0.7 dB	< 0.7 dB

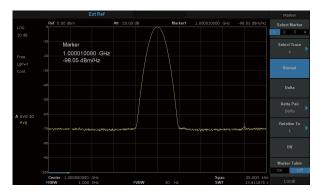
Design features

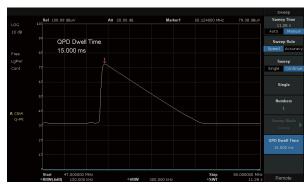

Easy to operate, Support four independent traces and cursors

	Ref 19.00 dBm						Select Marker
OG	-						1 2 3
				*			
	Mark	or					Select Trace
ree		1112 MHz					
	.31 6.33	dBm					
gPwr	A TAL Microsoftware La	A AL . H. LINI JA NA	1. March 1 Sec.	hand the second second	una talata ku anta a	in a set Minister of	
	A DAMAGE AND	the first of sub-phy		State And States	107 - 000 - 104 L	Contraction of the	
	- 27 A A A A A A A A A A A A A A A A A A	ALC: NO POST OF	ales for his second	a na na manana ka	and an unphysics	Var. S. Yanal Shareh P. Na	
							Delta
	-81						
	Center 9.95	9112 MHz			Span	3.000000 MHz	
	RBW		ABM		SWT	213.300 ms	
	Marker Tal	ala					
	Marker Ta	JIE					Relative To
	Marker	Trace	Readout	X Axis	Ampt		
					-39.06 dBm		
							Marker Table
							On Off
P-PK			Frequency	9.739112 MH2	-50.09 dBm		


-151 dBm Displayed Average Noise Level (RBW=10Hz)

	Ref -80.00 d8m	*Att 0.00 dB	Marker1	100.000000 MHz	-151.61 dBm	Select Marker
10 dB						1 2 3 4
	Marker					Select Trace
ree	100.000000					
qPwr	-151.61 dBm					
ont						
						Delta
						Deita
						Delta Pair Delta
AVG 50						
						Relative To
	-150 mart of the state of the s	and the second and the	manufacture and at	an a	moundation	
						orr
						Marker Table
						On Off
	-180 Center 100.000000 MHz			Span	10.000 kHz	
	•RBW 10.00000010142		N 1 Hz	SWT	1.86 s	Remote


📕 Zero span and demodulation capabilities



I Hz Minimum Resolution Bandwidth (RBW)

দ Phase noise -98 dBc/Hz@ 1 GHz, offset 10 kHz

EMI filter and Quasi-Peak detector following CISPR 16

Specifications

Specifications are valid under the following conditions: The instrument is within the calibration period, has been stored between 0 and 50°C for at least 2 hours prior to use, and has been powered on and warmed up for at least 40 minutes. The specifications include the measurement uncertainty, unless otherwise noted. **Specifications:** All products are guaranteed to meet published specifications when operating temperatures from 5 to 45°C, unless otherwise noted. **Typical:** Performance deemed typical implies that 80 percent of the measurement results will meet the typical published performance with a 95th percentile confidence level at room temperature (approximately 25°C). Typical performance is not warranted and does not include measurement uncertainty. **Nominal:** The expected performance or design attribute

Frequency Characteristic				
	SPA-932TG	SPA-921TG		
Frequency				
Frequency range	9 kHz-3.2 GHz	9 kHz-2.1 GHz		
Frequency resolution	1 Hz	1 Hz		
Frequency Span				
Range	0 Hz, 100 Hz to 3.2 GHz	0 Hz, 100 Hz to 2.1 GHz		
Accuracy	± Span / (number of sweep points - 1)			
Internal Reference Source	e			
Reference frequency	10.00000 MHz			
frequency reference accuracy	± [(time since last adjustment × frequency aging rate) + temperature stability + calibration accuracy]			
Initial calibration accuracy	<1 ppm			
Temperature stability	<1 ppm/year, 0 $^{\circ}$ C ~50 $^{\circ}$ C			
Frequency aging rate	<0.5 ppm/first year, 3.0 ppm/20 years			
Marker				
Marker resolution	Span / (number of sweep points - 1)			
Marker uncertainty	\pm [frequency indication × frequency reference uncertainty + 1% × span + 10% × resolution bandwidth + marker resolution]			
Frequency counter resolution	1 Hz			
Frequency counter uncertainty	± [frequency indication × frequency reference accuracy + counter resolution]			
Bandwidths				
Resolution bandwidth (-3dB)	1 Hz~1 MHz*, in 1-3-10 sequence			
Resolution filter shape factor	< 4.8:1 (60 dB:3 dB), Gaussian-like			
RBW uncertainty	<5%			
Video bandwidth (-3dB)	1 Hz ~3 MHz, in 1-3-10 sequence			
VBW uncertainty	<5%			
*The DANL with RBW set to 1 or 3 Hz will be similar to 10 Hz.				

Amplitude Characteris	stic			
Amplitude and Level				
Measurement range	DANL to +10 dBm, 100 kHz~1 MHz, preamplifier off DANL to +20 dBm, 1 MHz~3.2 GHz, preamplifier off			
Reference level	-100 dBm to +30 dBm, 1 dB steps	-100 dBm to +30 dBm, 1 dB steps		
Preamplifier	20 dB (nom.), 9 kHz~3.2 GHz			
Input attenuation	0~51 dB, 1 dB steps			
Maximum input DC voltage	+/- 50 V _{DC}			
Maximum average RF power	30 dBm, 3 minutes, fc≥10 MHz, attenua	ation >20 dBm, preamp off		
Maximum damage level	33 dBm, fc≥10 MHz, attenuation >20 d	Bm, preamp off		
Displayed Average Noise	e Level (DANL)			
	20 °C ~30 °C , attenuation = 0 dB, sam	ple detector, trace average >50		
		RBW=10 Hz	Normalization to 1 Hz	
	9 kHz~100 kHz	-100 dBm (nom.)	-110 dBm (nom.)	
	100 kHz ~1 MHz	-97 dBm, -101 dBm (typ.)	-107 dBm,-111 dBm (typ.)	
Preamp off	1 MHz~10 MHz	-122 dBm, -126 dBm (typ.)	-132 dBm,-136 dBm (typ.)	
· · · · · · · · · · · · · · · · · · ·	10 MHz~200 MHz	-127 dBm,-131 dBm (typ.)	-137 dBm,-141 dBm (typ.)	
	200 MHz~2.1 GHz	-125 dBm, -129 dBm (typ.)	-135 dBm,-139 dBm (typ.)	
	2.1 GHz~3.2 GHz	-116 dBm, -122 dBm (typ.)	-126 dBm,-132 dBm (typ.)	
	9 kHz~100 kHz	-107 dBm (nom.)	-117 dBm (nom.)	
	100 kHz ~1 MHz	-122 dBm, -127 dBm (typ.)	-132 dBm,-137 dBm (typ.)	
	1 MHz~10 MHz	-138 dBm, -144 dBm (typ.)	-148 dBm,-154 dBm (typ.)	
Preamp on	10 MHz~200 MHz	-146 dBm, -151 dBm (typ.)	-156 dBm,-161 dBm (typ.)	
	200 MHz~2.1 GHz	-145 dBm, -148 dBm (typ.)	-155 dBm,-158 dBm (typ.)	
	2.1 GHz~3.2 GHz			
	2.1 6h2~5.2 6h2	-135 dBm, -139 dBm (typ.)	-145 dBm,-149 dBm (typ.)	
Phase Noise				
Phase noise	20 °C ~30 °C ,fc=1 GHz <-95 dBc/Hz @10 kHz offset, <-98 dBc/Hz (typ.) <-96 dBc/Hz @100 kHz offset, <-97 dBc/Hz (typ.) <-115 dBc/Hz @1 MHz offset, <-117 dBc/Hz (typ.)			
Level Display				
Logarithmic level axis	10 dB to 200 dB			
Linear level axis		10 dB to 200 dB		
Units of level axis		0 to reference level		
Number of display points	751	dBm, dBmV, dBµV, dBµA, V, W		
1 7 1	4			
Number of traces Trace detectors	Positive-peak, Negative-peak, Sample, I	Normal Average (Veltage/BMS (Video)	Quasi peak (with EMI option)	
			, Quasi-peak (with EMI option)	
Trace functions	Clear write, Max Hold, Min Hold, View, I	Blank, Average		
Frequency Response	20 °C to 20 °C 2007 to 7007 white t			
Preamp off	20 ℃ to 30 ℃ , 30% to 70% relative h ±0.8 dB,	numidity, attenuation = 20 dB, reference	ce frequency 50 Minz	
Preamp on	±0.4 dB, (typ.) ±0.9 dB, ±0.5 dB, (typ.)			
Error and Accuracy	±0.5 dB, (typ.)			
Error and Accuracy				
Resolution bandwidth switching uncertainty	Logarithmic resolution ±0.2 dB, liner re	10 kHz RBW Logarithmic resolution ± 0.2 dB, liner resolution ± 0.01 , nominal		
Input attenuation switching uncertainty	20 °C to 30 °C , fc = 50 MHz, preamp $\pm 0.5 \text{ dB}$			
			tenuation = 20 dB, 95th percentile reliability	
Absolute amplitude accuracy	preamp off		ut signal -20 dBm	
	preamp on		ut signal -40 dBm	
Total amplitude accuracy	20 °C to 30 °C , Fc>100 kHz, input signal -50 dBm \sim 0 dBm, RBW = 1 kHz, VBW = 1 kHz, peak detector, attenuation = 20 dB, preamp off, 95th percentile reliability			
	± 0.7 dB			
RF input VSWR	input attenuation 10 dB, 1 MHz~3.2 GH <1.5, nom	Z		

Amplitude Characteristic			
Distortion and Spurious Responses			
Second harmonic distortion	fc≥50 MHz, mixer level -30dBm, attenuation = 0 dB, preamp off, 20 $^\circ \! \rm C$ to 30 $^\circ \! \rm C$, typ65 dBc		
Third-order intercept	fc≥50 MHz, two -20 dBm tones at input mixer spaced by 100 kHz, attenuation = 0 dB, preamp off, 20 $^\circ\!C$ to 30 $^\circ\!C$, typ. +10 dBm		
1dB Gain Compression	fc≥50 MHz, attenuation = 0 dB, preamp off, 20 $^\circ\!\!\mathbb{C}$ to 30 $^\circ\!\!\mathbb{C}$, nom. >-5 dBm		
Residual response	input terminated = 50 $\Omega,$ attenuation = 0 dB, 20 $^\circ \! \rm C$ to 30 $^\circ \! \rm C$, typ. <-90 dBm		
Input related spurious	Mixer level = -30 dBm, 20 $^\circ\!\mathrm{C}$ to 30 $^\circ\!\mathrm{C}$ <-65 dBc		

Sweep and Trigger			
Sweep time	1 ms to 3000 s		
Sweep accuracy	Accuracy, Speed		
Sweep mode	Sweep	FFT	
	RBW=30 Hz~1 MHz	RBW=1 Hz~10 kHz	
Sweep rule	Single, Continuous		
Trigger source	Free, Video, External		
External trigger	5 V TTL level, rising edge/falling edge		

Tracking Generator			
	SPA-932TG	SPA-921TG	
Frequency range	100 kHz~3.2 GHz	100 kHz~2.1 GHz	
RBW	30 Hz~1 MHz, only sweep mode		
Output level	-20 dBm~0 dBm		
Output level resolution	1 dB		
Output flatness	+/-3 dB		
Output maximum reverse level	Mean power:30 dBm,DC: ±50 V _{DC}		

EMI Receiver Measurement				
Resolution bandwidth (6 dB)	200 Hz,9 kHz,120 kHz			
Detector	Quasi-peak (following CISPR 16-1-1)			
Dwell time	0 us~10 s			
External input and exte	ernal output			
Front panel RF input	50 Ω, N-female			
Front panel TG output	50 Ω, N-female			
10 MHz reference output	10 MHz, >0 dBm, 50 Ω , BNC-female			
10 MHz reference input	10 MHz, -5 dBm~+10 dBm, 50 $\Omega,$ BNC-female			
External Trigger input	1 k Ω , 5 V TTL , BNC-female			
Communication Interfa	ace			
USB Host	USB-A 2.0 +			
USB Device	USB-B 2.0			
LAN	LAN (VXI11), 10/100 Base, RJ-45			
General Specification				
Display	TFT LCD, 1024×600(waveform area 751×501), 10.1 inch			
Storage	Internal (Flash) 256 MByte, External (USB storage device) 32 GByte			
Source	Input voltage range (AC) 100 V~240 V, AC frequency supply 45 Hz~440 Hz, Power consumption 30 W			
Temperature	Working temperature 0 $^\circ\!\!\mathbb{C}$ to 50 $^\circ\!\!\mathbb{C}$, Storage temperature -20 $^\circ\!\!\mathbb{C}$ to 70 $^\circ\!\!\mathbb{C}$			
Humidity	0 °C to 30 °C , ≤95% Relative humidity; 30 °C to 50 °C , ≤75% Relative humidity			
Dimensions	393 mm×207 mm×116.5 mm (W×H×D)			
Weight	Contain tracking generator 4.60 kg (10.1 lb)			

Electromagnetic Compa	tibility and Safety	SPA-900TG Spectrum Analyzer Data Sheet
EMC	EN 61326-1:2013	
Electrical safety	EN 61010-1:2010	