

Application of Fast Laser-Powered Electric-Field Probes

General Information June 13, 2019

Existenzgründungen aus der Wissenschaft

Bundesministerium für Wirtschaft

aufgrund eines Beschlusses

des Deutschen Bundestages

und Energie

Gefördert durch:

Europäischer Sozialfonds für Deutschland

EUROPÄISCHE UNION

Application of Laser-Powered Field Probes

- Part 1 Introduction
 - > Battery-powered vs. laser-powered electric-field probes
- Part 2 Avoiding Common Issues of Laser-Powered Probes
 - Power density on fiber cables, burn-in defect & mechanism
 - > Use and intention of sacrificial cable kits
 - Handling recommendations and cleaning of fiber connectors
 - Part 3 Enhanced EMC Testing Examples
 - Fast sweep measurements (e.g., for IEC 61000-4-3 field calibration)
 - Radar pulse measurements (e.g., Ford EMC Spec FMC1278)
 - > Use of multi-probe systems (e.g., for IEC 61000-4-21, ISO 11451-2)

Part 1 – Battery- vs. Laser-powered Probes

	Battery- powered	Laser- powered
Unlimited duration of use	×	\checkmark
Low maintenance (charging & replacing batteries, replacing probes)	×	\checkmark
Low risk of burn-in defects due to contamination of fiber connector end-faces	\checkmark	×
Support of long fiber cables and multiple couplers	×	√ *
High sampling rate	×	\checkmark
Support of high dynamic range	×	√ *

*) LSProbe 1.2 Field Probe

Gefördert durch:

ZENTRUM FÜR MIKROTECHNISCHE PRODUKTION

*) Class 1M laser, automatic power reduction, turned off within 1ms, 830 nm, temperature controlled within laser's safe operating range

TECHNISCHE UNIVERSITÄT DRESDEN

Basics of Fiber-Optic Cables

- Optical fiber
 - > Used to transmit light signals over long distances
 - Strand of pure glass about the diameter of a human hair
 - Consists of glass core, glass cladding and buffer coating
 - Core has higher refractive index than cladding (few percent)
 - Difference in refractive index yields total internal reflection, light is confined within the core, critical angle about 82°

From: www.photonics.com/Articles/Fiber_Optics_Understanding_the_Basics/a25151

Basics of Fiber-Optic Cables

- Specified by outer diameters of the core, cladding and coating, e.g., 62.5/125/150 refers to $62.5\,\mu m,\,125\,\mu m$ and $150\,\mu m$
- Protected by strengthening (aramid) fibers and cable jacket (PE)
- Simplex / duplex fiber cable with single / two strand(s) of glass
- Single / multi-mode fibers
 - $^{\flat}$ Multi-mode: larger core diameter (50 / 62.5 μm) allows multiple modes of light to propagate
- Step-index / graded-index fibers
 - Step-index: light only reflected at core-cladding interface
 - Graded-index: refractive index of the core decreases gradually and allows a curved light path within the core
- → LSProbe 1.2: duplex, multi-mode (62.5 μ m), graded-index

Part 2 – Avoiding Common Issues

- Common issue of most laser-powered field probes:
 - Contamination of fiber connector end-faces
 - → System failures, or in worst case,
 - → Burn-in defects.
- For illustration, the fiber end-faces of a clean, contaminated and defective fiber connector (left to right):

Burn-In Defects

- For comparison: Midday at equator, solar electromagnetic radiation per unit area is approx. 1 kW/m^2 .
- Rough approximation: Transmitting 1W using a fiber-optic cable with diameter of $60 \,\mu m$ yields a power density of approx. 300 MW/m².
- If fiber connector is contaminated, the particles will absorb the energy. \rightarrow This can lead to **burn-in defect**!

Example for Burn-In Defects

Fiber end-faces at joint between field probe and extension cable:

Field Probe		
Power fiber (FC) before/after cleaning	Data fiber (ST) before/after cleaning	

Sacrificial Cable Kits – Intension and Use

- Components:
 - A pair of short fiber cables with FC/ST connectors at one end and E2000 connectors at the other end.
 - E2000 adapter to connect the two sacrificial cables.
- Typical setup to connect:
 - > the Computer Interface with the extension cable and
 - > the extension cable with the Field Probe.

Sacrificial Cable Kits – Intention and Use

- Objectives of the implemented E2000 connectors:
 - > Two defined and convenient points for disconnecting the Field Probe from and the Computer Interface.
 - Integrated shutters, which open and close automatically and therefore reduce the risk of contamination.
 - The connection should not be opened at the FC/ST connectors of the Computer Interface and Field Probe.

Handling Recommendations

- Use field probe as delivered, with the sacrificial cable kits!
- For disconnecting the field probe from the computer interface, only use the E2000 connectors of the sacrificial cable kits.
- The connection must not be opened directly at the FC/ST fiber connectors of the computer interface or the field probe.
- However, if disconnected directly at the FC/ST connectors, cover the connectors with the supplied dust caps.
- Before reconnecting any of the connectors, carefully clean the connectors and double-check them using a fiber microscope.
- In the case of a burn-in defect at one of the E2000 connectors, replace the complete sacrificial cable kit (both cables).

Cleaning of Fiber Connectors

- Recommended sequence:
 - Inspect the connector / ferrule end-faces for contamination using a fiber microscope.
 - Clean the connector end-faces.
 - Reinspect the end-faces (if necessary clean and inspect again).
 - Finally, connect the respective fiber connectors.
- Cleaning methods:
 - > Dry cleaning for minor contaminations.
 - Wet-to-dry cleaning for major contaminations and dried residues, e.g., resulting from skin oils, skin flakes, dust particles.
 - Yet cleaning can leave alcohol residues if left to air dry, therefore, it should directly be followed by dry cleaning.

Cleaning of Fiber Connectors

. . .

- One-click cleaners (cleaning pens)
 - To clean the connector end-faces place the adapter on the tip of the cleaner, insert the fiber end-face (ferrule) into adapter and push both ends together until you hear a click.
 - To clean the fiber end in a bulkhead adapter, remove the adapter from the tip of the on-click cleaner, insert the tip into the bulkhead and press until you hear a click.

ZENTRUM FÜR MIKROTECHNISCHE PRODUKTION

Slide 14

Cleaning of Fiber Connectors

- Cleaning kits:
 - > Lint-free cleaning wipes
 - Cleaning solution (isopropanol)
- Wet-to-dry cleaning:

- Yo clean the fiber end-faces moisten a corner of the cleaning wipe with the cleaning solution,
- > hold the end-face perpendicular to the wipe and
- > glide with the connector end-face over the wipe, firstly over the moistened area and secondly over a dry area of the wipe.
- Fiber microscopes:
 - Camera-based (USB) variants
 - Optic variants

Part 3 – Enhanced EMC Testing Examples

- Fast sweep measurements
 - > IEC 61000-4-3 Immunity to radiated radio-frequency fields
- Radar pulse measurements
 - Ford Component EMC Specifications FMC1278
- Use of multi-probe systems
 - ISO 11451-2 Road vehicles Vehicle test methods, Part 2 - Off-vehicle radiation sources
 - Vertical reference line with 4 field probe positions
 - > IEC 61000-4-21 Reverberation chamber test methods
 - → 8 field probe positions at corner points of testing volume

Fast Frequency Sweep Example

- Measurement in a RC with 2.5 ms per frequency
- Field-strength components over time, sampling rate 500 kS/s
- Averaging over 1 ms / 500 samples

Application for Antenna Evaluations

- Evaluation of antenna's field distribution with fast sampling field probe, e.g., 500 kS/s in combination with fast signal generator
 - Frequency sweep with 3 ms per frequency
- Example: Comparison of different horn and log.-per. Antennas in the frequency range 800 MHz to 6 GHz

Application for Antenna Evaluations

- Grid with 256 points, grid size (30 x 30) cm with 2 cm increment
- Frequency range (0.8 6) GHz, increment 2 MHz, 2601 freq.
 - → approx. 10 s per frequency sweep
- Manual positioning of the probe (open / close chamber door)
 approx. 4h per antenna (polarization)
- Automated positioning system in development
 - → assuming 2s per positioning step \rightarrow less than 1 h!
 - → grids with higher resolutions
 - → Respective field probes allow to perform fast frequency sweeps, now the positioning of the probe is the bottleneck!

Application for Antenna Evaluations

. . .

Slide 20

Application for Chamber Validation

- Chamber Validation (field homogeneity /uniformity)
- Calibration of the field according to IEC 61000-4-3:
 - Leveling to the target field strength
 - Validation to ensure uniformity, concept of uniform field area (UFA), vertical plane in which the field variations are acceptable small
 - > Typical UFA size (1.5 x 1.5) m, spacing 0.5 m, 16 points
 - Uniformity criteria within (-0 +6) dB of nominal field strength (for not less than 75% of all points)
- Customer feedback:
 - Calibration 1 to 3 days depending on setup, frequency range, etc.
 - Motivation to use fast sampling field probes
 - Positioning system for field probe requested (further time savings)

Application for Chamber Validation

- Field Probe + Positioning System:
 - > Use of laser-powered probe
 - > Three dimensional testing volume
 - > High positioning accuracy
 - No zeroing upon start-up
- Development project:
 - Suspended field probe
 - Straps with integrated fiber cables
 - Gray code for absolute detection of probe position.

Prototype system, March 2019

Radar Pulse Measurements

- Example: Ford EMC Specification FMC1278 RI 114 Immunity to RF electromagnetic fields band 7 & 8:
 - Frequency ranges (1.2 1.4) GHz and (2.7 3.1) GHz
 - Test level 300 V/m (600 V/m, e.g., for supplemental restraints systems)
 - > PM with pulse duration 3us and pulse repetition rate 300 Hz
- Respective requirements for electric-field probes:
 - Usable field strength range up to 600 V/m
 - High sampling rate, e.g., 500 kS/s

TECHNISCHE UNIVERSITÄT DRESDEN

Multi-Probe Systems - Examples

Reference Line with 8 field probes

Reverberation Chamber (RC) with 8 plus 1 field probes

Vibrating Intrinsic Reverberation Chamber (VIRC) with 8 probes

Slide 25

- Testing volume with 8 field probes at respective corner points
- Synchronized reading of the 24 (8 x 3) field strength components

TECHNISCHI

- IEC 61000-4-21:
- Validation of the field homogeneity (standard deviations of the field strength components)
- → LSProbe 1.2: Measurement and evaluation feasible in real-time

MIKROTECHNISCH

.....

- Field probes with high sampling rate for measurements in reverberation chambers (IEC 61000-4-21).
- Customer example for validation of the field homogeneity: 1 field probe, 400 frequencies (1 s per freq.), 120 stirrer positions (3 s per pos.) and 8 probe positions (60 s per pos.)
 - more than 100 h per validation!
 - multi-probe system with 8 probes still more than 12 h
- Fast sampling field probe, e.g., 500 kS/s, in combination with fast power meter and fast signal generator:
 - → 10 ms per frequency, (400 x 0.01 s + 3 s) x 120 = 840 s
 - → approx. 15 min per validation!

Field strength over time (single probe, maximum of 8 probes)

Example for the validation of the field homogeneity

SProbe 1.2 provides built-in statistical functions

Accompanying Measuring Instruments

- Application of fast sampling field probes
- Need for accompanying measuring instruments
 - Fast signal generators
 - Fast power meters, e.g., LSPM 1.0 with sample rate 2 MS/s

LSPM 1.0 + LSProbe 1.2:

- Field calibration / validation
 - IEC 61000-4-3
 - IEC 61000-4-21
- Significant time-savings
- Synchronized readings
- → Real-time evaluation

Thank You.

ZENTRUM FÜR MIKROTECHNISCHE PRODUKTION

Slide 31

Distributed by: Reliant EMC LLC, 3311 Lewis Ave, Signal Hill CA 90755, 408-916-5750, www.reliantemc.com