EnglishPortugueseSpanish

Request a Quote / Contact Us!

    Manufacturer

    Part Number or Numbers

    KAPTEOS CHARACTERIZATION OF COMPACT ANTENNAS

    VECTORIAL E-FIELD MEASUREMENT & CHARACTERIZATION OF ULTRA COMPACT ANTENNAS

    Typical experimental setup

     

    Kapteos eoProbe as RX antenna on Cartesian robot

     

    Kapteos Calibration in the right Reference Planes

    Kapteos Calibration Process

     DIFFERENCE BETWEEN OPTICAL & RF RX LINK
    – NO SIMPLIFICATION FOR RF RX LINK
    – FOR OPTICAL RF LINK:

    Perfect isolation S12 =
    Output RL (Return Loss) given only by eoSense R
    Input RL linked at 1st order only to horn R
    Chain IL simply equal at 1st order to ILhorn x ILeoSystem

    THE ADVANTAGES OF THE KAPTEOS OPTICAL RX LINKS ARE: 
    – Rigorously perfect isolation K12 = 0
    – Almost infinite input Return Loss K11 ≃ 0
    – Whatever DUT upstream Kapteos system rigorously perfect decoupling of output Return Loss S22 = K22
    – Straightforward de-embedding of Kapteos system
    Insertion Loss ← H21 ≃ 0 S21 / K21
    For magnitude → Scalar Kapteos system calibration Scalar Kapteos system calibration
    For phase → Scalar Kapteos system calibration Straightforward post-treatment

    Kapteos Centered probe

    • K21 SUBSTRACTION

        – Minimum on σ on φS21 for βL/f = 12.89 °.μs

         

        Kapteos Centered probe z=0

      • – Phase accuracy → 1.7°

        USE OF MEASUREMENTS

      • Evolution of corrected phase with z

       

      Kapteos Evolution of corrected phase with z

      Evolution of S21 corrected phase with z

      Kapteos Centered probe at 19 -

       EVOLUTION OF S21 CORRECTED PHASE WITH Z

      – Perfect agreement with theory

      • In far-field region
      • In transition zone

       – Lower phase slope in near field region

      • Due to effective permittivity ≠ 1 in presence of optical probe
      • Phase velocity can be deduced

       – Effective optical probe permittivity

      • 3.6 @ 20 GHz

       

      PROBE INTERFERENCE ON HORN ANTENNA

      Evaluation from S11

       

      Kapteos Centered probe at 140

      No measurable interference down to 2λ

       

      HYPOTHESES

      Kapteos Hypotheses

      Kapteos Hypotheses Graph -

      AT BOUNDARY OF NEAR-FIELD REGION

      Negligible effect of probe from ~19 →21 GHz

      Kapteos Centered probe at z=14mm

       CALCULATION OF BEAM DIVERGENCE

      eoProbe sensitivity axix

      Kapteos Calculation of beam divergence

      Kapteos Centered Probe at 19GHz

       UNCERTAINTY ON S21 VERSUS S21

      Kapteos Centered Probe at 19GHz PS21

      Fit 2 → Scalar Kapteos system calibration noise contributions
      ● Noise floor
      ● Asymptotic measurement accuracy (~ 0,2 dB)

      RÉSUMÉ OF OBTAINED RESULTS

      VNA measurements parameters
      – Injected power 0 dBm, → Scalar Kapteos system calibration RBW = 10 Hz, no AVG
      ● Obtained results (@ 20 GHz & z = 0 mm otherwise written)
      – Equiv. optical fibre length → Scalar Kapteos system calibration 7417 ± 35 mm
      – Absolute eoSystem dephasing → Scalar Kapteos system calibration 4499 ± 21 rad
      – Negligible probe interference for z ≥ λ
      – Acceptable probe interference down to z = 0 mm
      – Probe effective permittivity ~ 3.6
      – RF beam Rayleigh distance → Scalar Kapteos system calibration 7.55 ± 0.45 mm
      – Magnitude accuracy on S21: ± 0.23 dB
      – Relative phase accuracy on S21: ± 1.7 °
      – No de-embedding required
      – No incessant calibration required

      Kapteos Résumé of obtained results image with eoProbe and TX antenna

      2D E-FIELD MAPPING

      Co-polar 2D mapping (120 points / mapping)
      – Spatial step in x direction → Scalar Kapteos system calibration 2 mm
      ● -11mm ↔ 11 mm (12 values) 11 mm (12 values)
      – Spatial step in y direction → Scalar Kapteos system calibration 2 mm
      ● -9 mm ↔ 11 mm (12 values) 9 mm (10 values)
      – Frequential step: 1 GHz
      ● 19 GHz ↔ 11 mm (12 values) 22 GHz (4 values)
      ● Graphs
      – Modulus – contour lines every 1 dB
      ● Max in red
      – Phase – contour line every 10°

      Kapteos 2D E-field mapping

      MAIN POLARISATION

      S21 magnitude @ 19 GHz

      Kapteos Main Polarization at 19GHz z=5mm -

       

      ● S21 phase @ 19 GHz

      Kapteos S21 phase 19 GHz Main Polarization at 19GHz z=5mm

       

      ● S21 magnitude @ 20 GHz

      Kapteos Main Polarization at 20GHz z=5mm

       

      ● S21 phase @ 20 GHz

      Kapteos Main Polarization S21 phase at 20GHz z=5mm

      ● S21 magnitude @ 21 GHz

      Kapteos Main Polarization S21 magnitude at 21 GHz z=5mm

      ● S21 phase @ 22 GHz

      Kapteos Main Polarization S21 phase at 22GHz z=5mm

      CAUSSIAN BEAM FIT OF MAIN POLARISATION

      f = 20 GHz
      – Measurement in orange
      – Fit in blue

      Kapteos Gaussian beam fit of main polarisation

      f = 20 GHz
      Residue → RF beam close to a gaussian beam even in the near-field region!

      Kapteos Gaussian beam fit of main polarisation f = 20 GHz

      RF BEAM PARAMETERS

      Extracted from gaussian fit of 2D field mapping

       

      = 19 GHz

      = 20 GHz

      = 21 GHz

      = 22 GHz

      Beam
      center
      (x0,y0)
      in mm

      (0.6 ; -0.1)

      (0.4 ; 0.5)

      (0.8 ; -0.2)

      (0.7 ; 0.0)

      Beam waist
      (ωx,ωy)
      in mm

      (10.6 ; 10.1)

      (11.7 ; 10.5)

      (10.8 ; 10.9)

      (11.8 ; 11.7)

      Max(ρS21)

      -49.1 dB

      -49.9 dB

      -47.9 dB

      -53.4 dB

      ● Beam center
      – x0 = 0.6 ± 0.2 mm & y0 = 0.1 ± 0.3 mm
      ● Beam waist @ 1/e² of max power
      – ωx = 11.2 ± 0.6 mm & ωy = 10.8 ± 0.7 mm

      NEAR TO FAR FIELD TRANSFORMATION

      ● Measurement of magnitude at = 5 mm

      Kapteos Near to Far field transformation Measurement of magnitude at z = 5 mm

      NEAR TO FAR FIELD TRANSFORMATION

      ● Forward propagation at = 15

      Kapteos Near to Far field transformation Forward propagation at z = 15 mm

      NEAR TO FAR FIELD TRANSFORMATION

      ● Forward propagation at = 105 mm

      Kapteos Near to Far field transformation Forward propagation at z = 105 mm

      NEAR TO FAR FIELD TRANSFORMATION

      ● RF power propagation

      Kapteos Near to Far field transformation RF power propagation at 19GHz -

      NEAR TO FAR FIELD TRANSFORMATION

      ● RF phase propagation

      Kapteos Near to Far field transformation RF phase propagation at 19GHz

      BREACKTHROUGH IN ANTENNA CHARACTERIZATION

      ● Kapteos technology leads to a comprehensive vectorial near-field characterization of antennas and arrays without any compromise on performances!

      Kapteos Breakthrough in antenna characterization

       Application Note: Vectorial E-field measurement & characterization of Ultra Compact Antennas